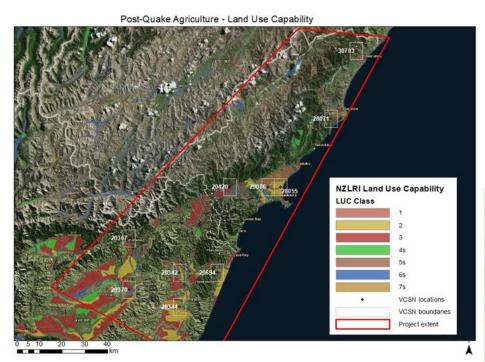
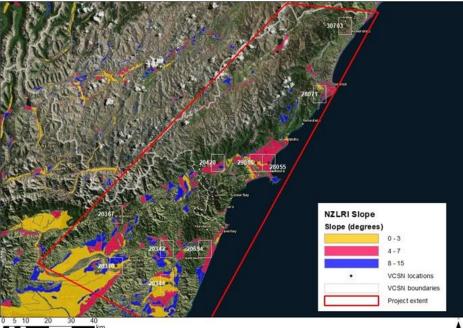

The New Zealand Institute for Plant & Food Research Limited

Brent Clothier & Robert Ward

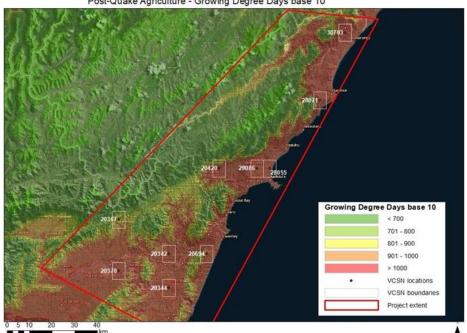
Plant & Food Research have assessed the suitability of different horticultural crops in response to land and weather characteristics in selected areas of North Canterbury.

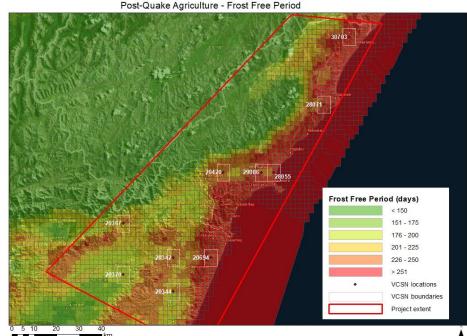

- Firstly, a broad GIS sweep over for an initial screening of the suitability for generic horticultural crops
- Secondly, a more detailed analysis performed for ten Virtual Climate Station Network locations (VCSN), ranging from Kekerengu in the north to Cheviot in the south for the crops of:
 - Apples
 - Kiwifruit
 - Wine grapes
 - o Blueberries
 - Hazelnuts and walnuts
 - Avocados.


Two Criteria for Land for Generic Horticulture

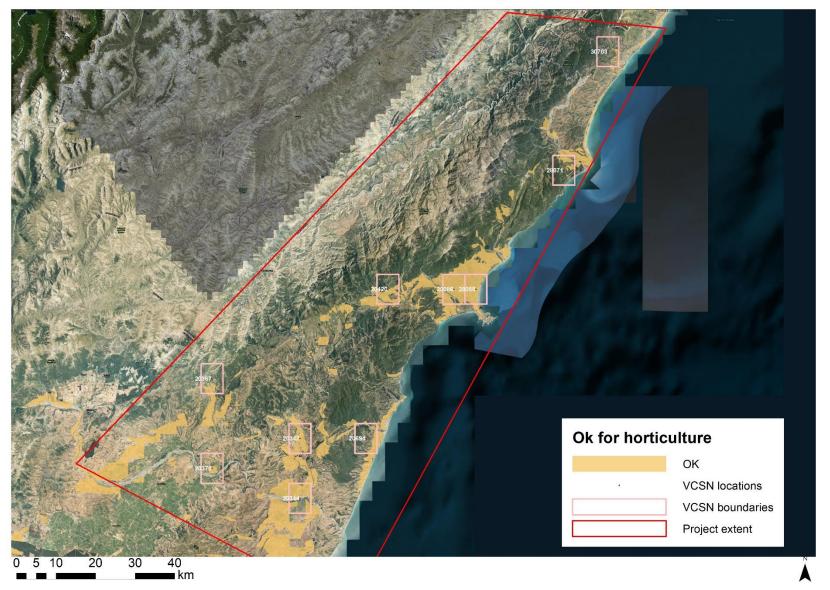
Land Use Capability (LUC) Classes: 1, 2, 3, 4s-7s

Land with slope < 15 °


Post-Quake Agriculture - Slope

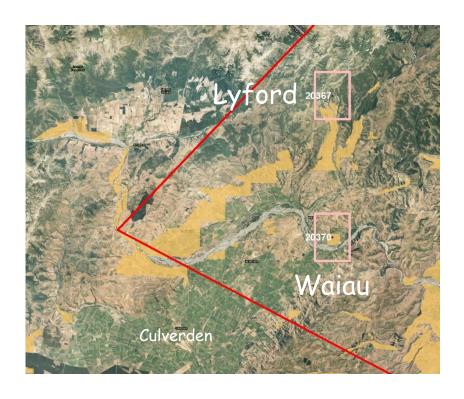

Two Criteria for Climate for Generic Horticulture

Growing Degree Days (GDD $_{10}$) > 800 degree days

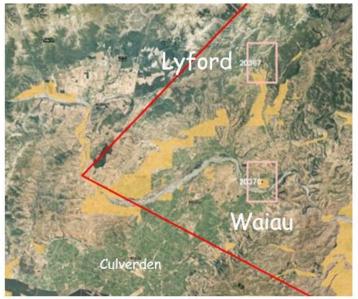


Frost-Free Period (FFP) > 200 days

The Potential Area for Horticulture: All Four Criteria Met


That's 41,515 ha (out of 466,000 ha)

Detailed Analyses: Six Crops across 10 VCSN Stations

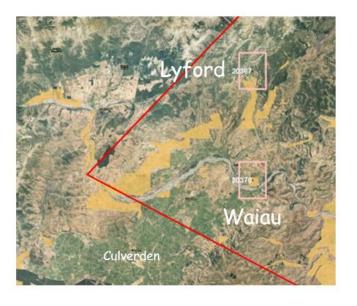

Waiau & Surrounds: Waiau & Lyford

- Two VCSN stations
- Apples
- Kiwifruit
- Wine grapes
- Blueberries
- Hazelnuts and walnuts
- Avocados.

A Location-Specific Assessment for Apples

Two VCSN stations

A 46-year weather record



Combined with our knowledge of the impact of weather on apple phenology & yields

Lyford Waiau

VCSN	20367	20370
Chill hours, April-September (T < 7°C)		
Mean	2425	1871
20th percentile	2233	1711
46-year minimum	1940	1419
Chill hours, April-September (T < 7.2°C)		
Mean	2494	1942
20th percentile	2291	1778
46-year minimum	2017	1495
Growing Degree Days base 10°C, October-April		
Mean	695	955
20th percentile	602	872
46-year minimum	442	722
Spring and autumn frosts (0°C)		
Mean date of first autumn frost	May 7	May 29
20th percentile first autumn frost	April 21	May 11
46-year earliest frost	March 17	April 19
Mean date of last spring frost	October 11	September 12
80th percentile last spring frost	October 25	September 27
46-year latest frost	December 1	November 12
Mean frost-free period	208 days	259 days
20th percentile frost-free period	185 days	244 days
46-year minimum frost-free period	106 days	179 days
Spring and autumn frosts (-2°C)		
Mean date of first autumn frost	June 6	June 24
20th percentile first autumn frost	May 23	June 4
46-year earliest frost	April 19	May 23
Mean date of last spring frost	September 5	August 2
80th percentile last spring frost	September 22	August 25
46-year latest frost	November 12	October 6
Mean frost-free period	273 days	325 days
20th percentile frost-free period	250 days	295 days
46-year minimum frost-free period	179 days	259 days

The VCSN Data for Waiau & Lyford

Results for Apple Suitability: Chilling & Warmth

- Winter chilling 1900 hrs < 7.2°C
 [Greater than the 500 required by apples]
- Waiau: Growing Degree Days (base 10° C) GDD = 955 degree-days \square Lyford: GDD = 695 degree days \square [Apples require 800 degree days]
- The 'first-fifty days after flowering' GDD
 Waiau = 171 degree-days; Lyford = 137 ☑
 [Greater than the 120 required by apples]

Apples suitable for Waiau, marginal at Lyford

Results for Apple Suitability: Frost Risk

	Lyford	Waiau
VCSN	20367	20370
Mean date of apple flowering	October 30	October 20
Probability of frost after flowering	17%	2%
Mean date of apple harvesting	April 14	March 22
Probability of frost before harvest	15%	0%
Mean GDD ₁₀ for the first 50 days after flowering	137	171

- Little risk in Waiau
- Some risk around Lyford. Is this bad?
- At Riwaka , Nelson, the frost risk is 16%
- At Tikokino, Central Hawke's Bay the risk is 56%
- A mitigatable risk, therefore, at both places

Results for Kiwifruit Suitability: Chilling & Warmth

- Winter chilling ✓ May-July temperatures 6.2 & 7.8 °C [Kiwifruit require May-July temperatures between 11.7 15 °C]
- Growing Degree Days (base 10° C) GDD = 695 & 955 degree-days 🗵 [Less than the 1100 degree days required by kiwifruit]

Results for Kiwifruit Suitability: Frost Risk

	Lyford	Waiau
VCSN	20367	20370
Mean temperature from May to July	6.2°C	7.8°C
Mean date of green kiwifruit budbreak	September 11	September 12
Probability of frost after budbreak (green-fleshed kiwifruit)	91%	43%
Mean date of gold kiwifruit budbreak	September 10	September 13
Probability of frost after budbreak (gold-fleshed kiwifruit)	91%	41%

- High frost risk at Lyford
- Moderate risk at Waiau. Mitigation would be required

But unsuitable for kiwifruit due to low summer-warmth (GDD_{10})

Results for Grape Suitability: Chilling & Warmth

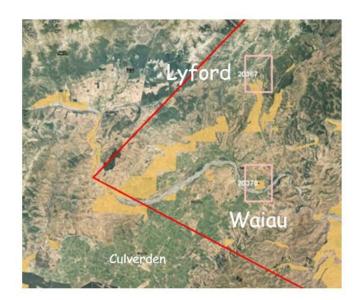
20367	20370
7.5°C	6.5°C
108.9mm	65.6mm
0	0
March 20	April 8
October 13	October 7
614	896
October 17	October 9
610	894
13%	0%
10%	0%
0%	0%
0%	0%
	7.5°C 108.9mm 0 March 20 October 13 614 October 17 610 13% 10%

- Growing Degree Days (base 10° C) GDD \approx 600 & 895 degree-days \boxtimes & \boxtimes [Pinot noir need 800-1000 & Sauvignon blanc 850-1050]

- Suitable for Waiau only

Results for Nut-Crop Suitability: Chilling & Warmth

	Lyford	Waiau
VCSN	20367	20370
Probability of >400 winter chill hours	100%	100%
Probability of >800 winter chill hours	100%	100%
Probability of >1200 winter chill hours	100%	100%
Probability of >1600 winter chill hours	100%	87%
Probability of autumn frost before March 15	0%	0%
Probability of spring frost after October 15	2%	0%
Probability of spring frost after November 1	2%	0%



- Growing degree days $GDD_{10} = 695 \& 955$ degree days \boxtimes [Exceeds GDD_{10} for nuts of 800 degree days only at Waiau]
- Low frost risk
- Well suited to nuts at Waiau only. Cultivar selection necessary

Lyford & Waiau Suitability for:

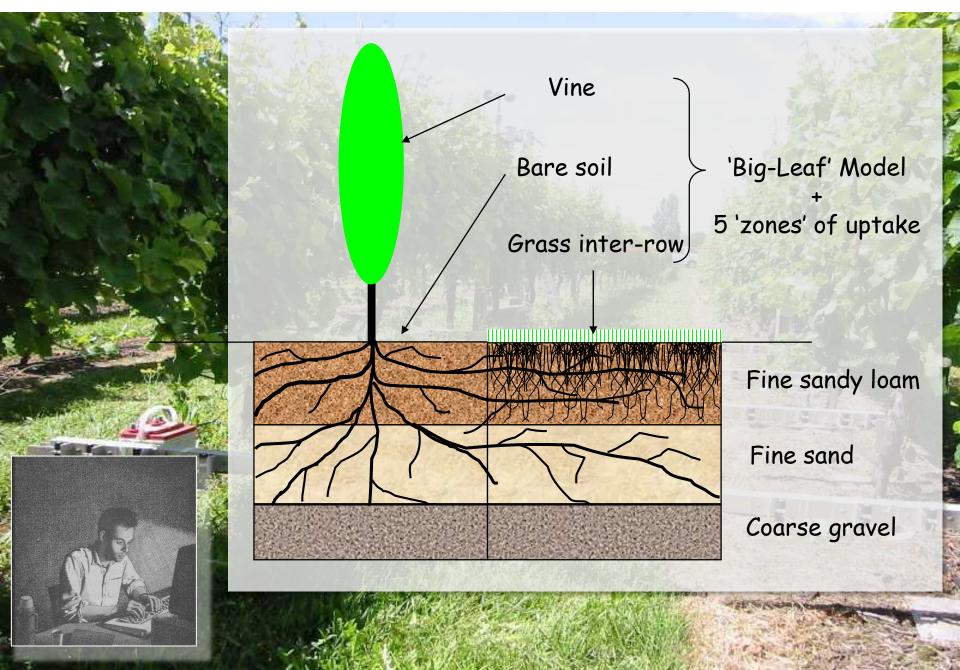
- Apples
- Kiwifruit
- Wine grapes
- Blueberries
- Hazelnuts and walnuts
- Avocados.

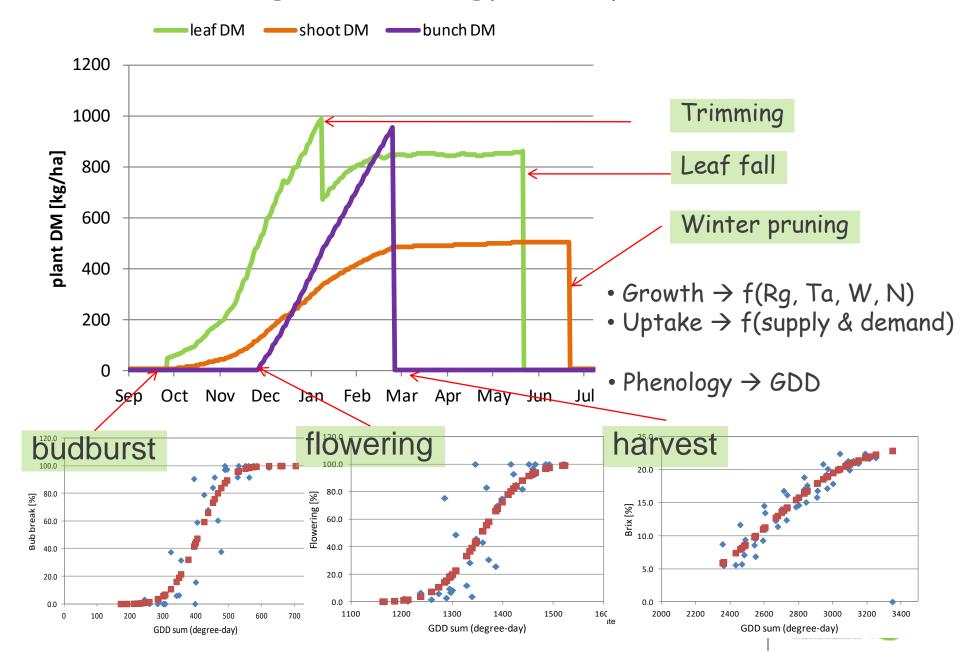
 $\overline{\mathbf{V}}$

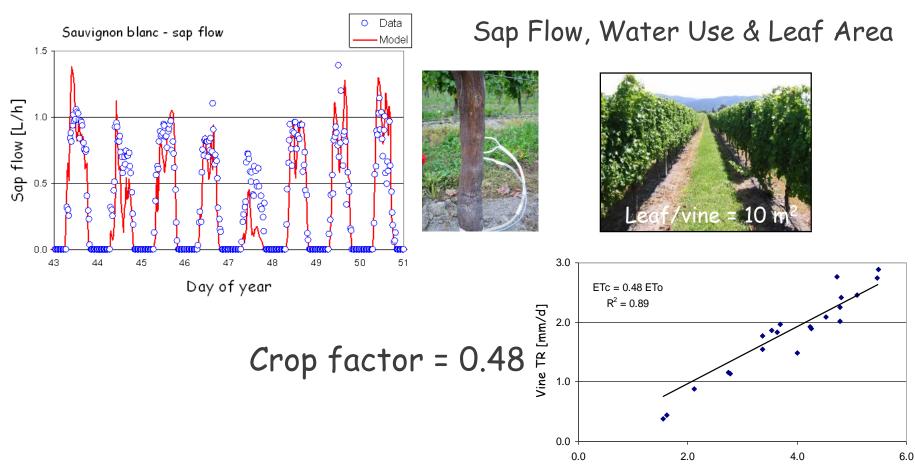
But what about water & the need for irrigation?

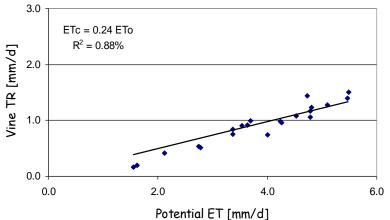
Marlborough: A Thirsty Landscape

Measurements to Understand Vineyard Water Use

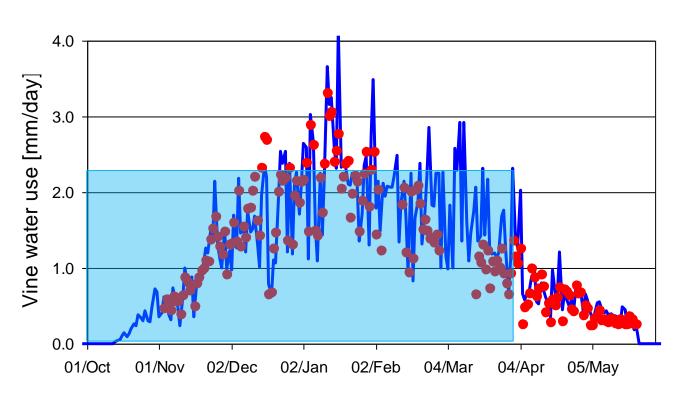







Modelling Vine Growth and Vineyard Water Use

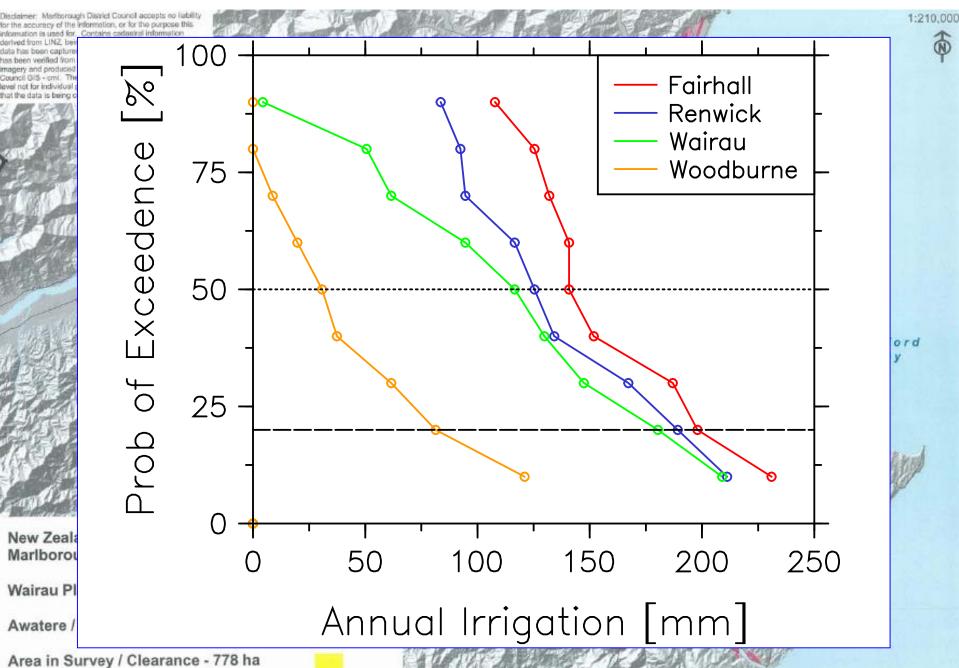
Modelling the Phenology of Grape Vines



Crop factor = 0.24

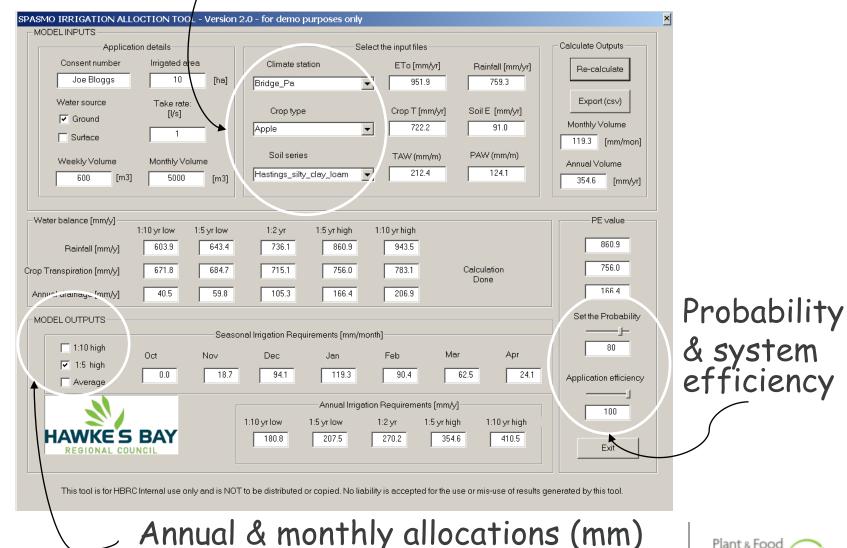
Potential ET [mm/d]

Vineyard Water Use [mm/d] scaled to Potential ET



Grape water use from sap-flow sensors (red) scaled to potential ET using a dual crop-factor approach (blue)

Current allocation: 2.2 mm/day from October to April



Modelling Allocation of Irrigation Water for Vineyards

Irrigation Allocation: A Tool for Policy & Implementation

Plant & Food RESEARCH RANGAHAU AHUMÁRA KAI